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Abstract
Alzheimer’s disorder (AD) causes permanent
impairment in the brain’s memory of the cellular
system, leading to the initiation of dementia. Earlier
detection of Alzheimer’s disease in the initial stages is
challenging for researchers. Deep learning and machine
learning-based techniques can help resolve many issues
associated with brain imaging exploration. Brain MR
Images (Brain-MRI) are used to detect Alzheimer’s in
computable research work. To correctly categorize the
stages of Alzheimer’s disease, discriminative features
need to be extracted from the MR images. Recently,
many studies have used deep learning methods for
the early detection of this disorder. However, overfit-
ting degrades the deep learning method’s performance
because the dataset’s selection images are smaller and
imbalanced. Some studies could not reach more dis-
criminative and effectual attention-aware features for
Alzheimer’s stage classification to increase the model
performance. In this paper, we develop a novel hierar-
chical residual attention learning-inspired multistage
conjoined twin network (HRAL-CTNN) to classify
the stages of Alzheimer’s. We used augmentation
approaches to scale insufficient and imbalanced data.
The HRAL-CTNN is efficiently overcoming the issues of
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not obtaining efficient attention-aware and generative
features for Alzheimer’s stage classification. The pro-
posed model solved the problem of redundant features
by extracting attentive discriminant features, and scal-
ing imbalance data by data augmentation, after that
training and validation using HRAL-CTNN. The exe-
cution of this proposed work has been performed on
the ADNI MRI dataset. This work achieved outstanding
accuracy of 99.97± 0.01% and F1 score of 99.30± 0.02%
for Alzheimer’s stage classification. This model pro-
posed by our group outperformed the existing related
studies in terms of the model’s performance score.

K E Y W O R D S

Alzheimer’s disorder, attention learning, conjoined neural network,
convolutional neural network, deep learning

1 INTRODUCTION

Alzheimer’s disease (AD) damages brain tissue and kills neurons, causing memory loss and
impairment of daily tasks, including reading, speaking, and writing.1,2 Numerous studies have
shown that neurodegenerative changes associated with Alzheimer’s disease begin decades before
symptomatic disease.2,3 Patients with mild cognitive impairment behave aggressively, while
end-stage AD leads to death due to heart failure and respiratory dysfunction.1,2,4 All indicators
of Alzheimer’s disorder start slowly, but over time, when an individual’s brain disorders begin,
they are severely affected. Therefore, early diagnosis and treatment of Alzheimer’s can improve
patient outcomes.5–7 Many people suffer from this disease every year. It is expected that 1 in 85
people worldwide will suffer from AD by 2050.8

Alzheimer’s disease reduces the size of the brain’s cerebral cortex and hippocampus while
expanding the size of the ventricles. As a part of the central nervous system (CNS), perfection in
memory and logical abilities are destroyed along with neuronal disorders in the rest of the brain,
eventually leading to a person’s death.3,9 Alzheimer’s disease has five primary stages: cognitive
normal (CN), significant memory concern (SMC), early mild cognitive impairment (EMCI), late
mild cognitive impairment (LMCI), and Alzheimer’s disease (AD).5,7 Researchers have developed
various computer-aided diagnostic systems (CADSs) to accurately find and classify the extracted
features from MR images and design a detection cum prediction model.5,9,10

Alzheimer’s disease is still not well diagnosed, and there is no cure. Instead, a few ways to
treat the disease slow its spread.1 Therefore, early detection is an important part of improving
the lives of people and their families from the disease. This is done with cognitive, psychological,
or clinical tests with computer-aided support. MRI (magnetic resonance imaging) of the brain is
some of the most important in clinical trials.6 This is because these images show how the shape
of the brain has changed over time and has a strong link to the brain’s structure. MRI images are
primarily used to see how the shape of the brain changes over time.11,12 In MRI images, the areas
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where cells are dying because of the disease have very low intensities, which makes them look
darker than healthy areas.13,14

Most of the ways images are used to help diagnose AD are related to computer vision,15

but recently, some machine learning16,17 techniques have been added. For example, Stonnington
et al.18 used regression analysis with likelihood estimation to look for and track the disease, while
Li et al.19 used support vector machines (SVMs) to help with diagnoses. Researchers often use the
ML method to find image patterns automatically.20,21 MRI has been used to diagnose AD in its
early stages using classical machine learning algorithms such as the SVM algorithm22 and linear
analysis.23 To classify the MRI, it was recently suggested to use a feed-forward neural network21

that used a dual-tree complex wavelet transform to extract the features. They compared their
model to other popular methods and reported higher performance. In Reference 24, a study with
four Alzheimer’s stages was suggested. The study looked at the diagnosis of AD, early mild cog-
nitive impairment (EMCI), late mild cognitive impairment (LMCI), and healthy controls (HCs).
Multicore SVM25 and weighted random SVM26 have also been employed for the AD classifica-
tion, and the proposed model performance has increased. An approach27 of machine learning
that is based on random forests has been used to find the many methylation regions that have the
capability to be employed as biomarkers for Alzheimer’s disease.

Rather than machine learning (ML), researchers are also using deep learning (DL) to describe
AD in MRI images by making computational models with multiple processing layers.28,29 DL is
a subdomain of ML, but it automatically learns from the images and extracts the features.28–30 In
a traditional machine learning model, an expert label the data, which can be slightly subjective.
DL eliminates the need for that expert.31–34 DL technologies and deep networks are increasingly
used in medical imaging.35,36

Convolutional neural networks (CNNs) are DL models that analyze multidimensional data,
such as time series and photographs. Convolutional neural networks can analyze these types of
data more effectively than traditional ML methods.37,38 Convolutional neural networks can ana-
lyze various data that are more accurately than conventional approaches. They build successive
feature maps by extracting simple characteristics of the data (e.g., vertices and edges in images)
in the first layers and then grouping those simple qualities into more complex patterns using the
information obtained from those simple features (e.g., shapes, area, volume, etc.).39 The creation
of these feature maps involves the application of convolutional procedures that have trainable
kernels.39,40 The feature maps are generated by applying those operations to the layer’s input. In
convergent expansion in a network, two complementary functions, pooling, and nonlinear trans-
formations are beneficial.41 After this step is finished, the processed feature maps serve as the
foundation for the prediction (typically by employing entirely related layers).41,42

Deep learning methods have significantly improved performance over most non-deep learn-
ing methods.36 Researchers have recently developed models/algorithms based on deep learning
to get features from MRI.36,43 Deep learning frameworks or techniques primarily focus on binary
classification that shows whether an individual has AD.3,6 However, for an efficient patient diag-
nosis, various stages of Alzheimer’s must be classified, such as MCI, SMC, LMCI, and EMCI.5,7

Convolutional neural networks have been found to perform well in deep learning when working
with large MR image datasets.44–46 However, the most vital benefit of CNNs over traditional ML
methods is that there is no requirement of manually extract features. It can automatically extract
efficient features for classifying Alzheimer’s stages.37,44,45 A study47 presented the use of biomark-
ers and a feature extraction-based model with DL techniques for Alzheimer’s stage detection. It
used AD and MCI stages to analyze and detect Alzheimer’s in MR Images with 90% accuracy. It
has not covered all stages of Alzheimer’s, and due to many redundant features and the imbalanced
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nature of the dataset taken, having overfitting too. A machine learning-based study48 proposed
an idea with a feature selection model that is based on reciprocal relationships and has acute
high-altitude response-like characteristics for brain regions that are predefined. In the machine
learning model, feature extraction is manual, which will take too much time for Alzheimer’s
detection, and these models are also overfitted. An extensive review49 of the different studies pro-
vided a comparative analysis. He showed that related studies only used the detection or prediction
of MCI versus AD in their study. The suggested review by many authors showed an exceptionally
low accuracy in the proposed deep learning model due to redundant feature sets and overfitting
in the model.

Recently, a classification approach50 for AD patients using a deep learning system was pre-
sented. When trying to anticipate AD and normal output classes, this study used autoencoders in
conjunction with CNNs to reach a classification accuracy of 98.4%. They did not consider other
stages or categories of Alzheimer’s that are also essential to detect the correct stage of Alzheimer’s.
Convolutional neural networks extract discriminative features and categorize Alzheimer’s dis-
ease and normal control.51,52 It is still challenging to extract useful information from large
unstructured data, even though deep learning-based techniques have achieved significant accom-
plishments in analyzing MRI big data.53 This is because the procedures require a significant level
of processing capability and extensive model training. Choosing the optimal architecture for the
system and the hyperparameters that give it the best performance might be just as difficult.

Helaly HA et al.54 developed a robust structure for the early diagnosis of Alzheimer’s disease
with MRI images for four AD stages. They used deep learning-based CNN with four stages of
the AD spectrum. Martinez-Murcia et al.55 used deep convolutional autoencoders to discover the
extensive data assessment of AD. The data-driven deconstruction of MRI images enables us to
identify features from MRI scans that indicate the underlying neurodegenerative process and an
individual’s Alzheimer’s cognitive symptoms. After doing a regression and classification analy-
sis, the influence of each coordinate of the autoencoder manifold on the brain is calculated. It
investigates the allocation of the extracted features across a broad spectrum of possible permu-
tations. Wen et al.56 managed a transfer learning-based model with the addition of a CNN. They
concluded that the methods based on transfer learning performed significantly better than the
methods not based on transfer learning. These observations are only influential when applied to
the binary AD classification task.

However, many deep learning-based studies have limitations, such as (1) overcoming the chal-
lenges associated with data inadequacy impediments in imbalanced datasets; (2) not covering
all the stages of Alzheimer’s disease, that is, the multiclass classification of Alzheimer’s disease;
(3) less efficient real-time early detection of Alzheimer’s stage, which requires a more precise
and tiresome tuning of several arguments that are a source of problems with overfitting and dis-
tress the whole efficiency of the working model; and (4) not obtaining generative and efficient
attention-aware discriminative features for efficient model training.

Apart from the above research background, many studies worked on feature extraction and
model training for Alzheimer’s detection and prediction. Some studies worked on CNN and
prebuilt models,44,54,57,58 convolutional network with autoencoder,55 CBIR with CNN,37 trans-
fer learning56 for detecting and predicting Alzheimer’s stages, whereas some of them worked on
feature extraction and selection using CNN.55,59,60 Moreover, the existing studies have many prob-
lems such as redundant feature extraction and selection, not covering all stages of Alzheimer’s,
performance degradation due to imbalanced data, and overfitting in the model.

Our study first put forward a novel multistage conjoined twin network-based CNN that
uses the hierarchical residual attention-based model to attain high cumulative efficiency for
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SHANKAR et al. 787

Alzheimer’s disorder diagnosis. After that, we provided hierarchical residual attention training
with the residual-based skip association in the residual to enable the attention-aware module
to create a more effectual discriminative MR feature set. Furthermore, a multistage corre-
lation filter was used for aggregating discriminant features and data augmentation to scale
the insufficient and imbalanced data. The overall proposed study started with 7000 MR brain
images and the classification of five Alzheimer’s stages. The vital contributions are enumerated
as follows:

1. An attention learning based CTNN for multistage classification of Alzheimer’s disorder.
2. We used hierarchical residual attention learning-inspired multistage conjoined twin networks

to obtain efficient attention-aware and generative features that are discriminative.
3. To use data augmentation approaches with attention learning to scale the insufficient and

imbalanced data.
4. To include multistage-initiated correlation filters for aggregating discriminant features in MR

images for Alzheimer’s stage classification.
5. To mitigate the overfitting of the model by tuning and regularization parameters.

This paper has been further organized: Section 2 explains the material and methods. Section 3
elaborates on the results and validation of the model. Section 4 discusses and compares the same
cohort-related work, and Section 5 addresses the conclusion and future scope.

2 MATERIALS AND METHODS

In our work, the proposed model covered four phases. The first phase covers data augmentation
and preprocessing. Feature extraction from taken MRI images is included in the second phase.
The third phase covers the hierarchical residual attention learning and multistage correlation fil-
ter. The fourth phase covers the classification of Alzheimer’s classes. We proposed a conjoined
twin-flavored CNN (CTNN) to categorize Alzheimer’s stages. We modified the VGG1938,39 based
CNN model40–42 by adding one additional convolutional layer in the proposed work to obtain max-
imum discriminative features from an imbalanced dataset. We have used two modified VGG19
layers with 17 convolutional layers, two fully connected layers, five maxpooling layers, four nor-
malizations, and four Gaussian noise layers for feature detection. We presented the parallel
architecture of CNN to train the model and extract features from the MR images for improving
model performance.

2.1 Data collection

In our proposed work, we collected the ADNI dataset61 from the library of neuroimaging
(LONI).5,61 We collected 7000 MRI images from the same dataset, in which 3300 cognitive normal
(CN), 996 significance memory concern (SMC), 1430 early mild cognitive impairment (EMCI),
1010 late mild cognitive impairment (LMCI), and 264 Alzheimer’s dementia (AD) MRI images
were present. The same MRI image data were collected within the age group of 25 to 90 years.
We applied image preprocessing steps to identify the efficient features and data augmentation
to keep the data balance in each class to improve the learning rate and accuracy. All the MRI
images used were 256× 256. Nevertheless, we converted them into 224× 224 using dimension
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788 SHANKAR et al.

T A B L E 1 MRI dataset and its demographic information.5,7,61–64

Alzheimer
stage

No. of
males

No. of
females

Age
(Average)

MMSE
(Average)

MoCA
(Average)

ADAS13
(Average)

CDR-SB
(Average)

CN 2162 1138 67.16 28.97 28.72 9.57 1.24

SMC 659 337 66.40 28.70 27.58 9.29 1.12

EMCI 848 582 64.60 25.31 24.12 8.92 0.76

LMCI 596 414 64.13 25.19 23.01 8.67 0.66

AD 133 131 75.71 18.34 16.23 7.94 0.49

Average/total 7000 67.60 25.30 23.93 8.88 0.85

scaling to process them into a CNN. Table 1 gives the information of the MRI dataset, including
demographic information for each stage.

2.2 Image preprocessing and data augmentation

Our proposed model goes through the image preprocessing65–67 steps for enhancing and trans-
forming MRI images. This improves low variation and insufficient brightness issues in MRI
images. We have applied image enhancement methods such as contrast stretching and Linear
contrast enhancement59 (for low variation and poor brightness problems), image acquisition65,66

(creates the visual features of MRI images, such as the hippocampus, cerebellum cortex, entorhi-
nal cortex, gray vol, white vol, etc), nonlinear filters60 (to remove certain types of nonadditive
noise in the MRI images), and hierarchical clustering68 (segmentation of intense features).

Data augmentation techniques,69,70 such as horizontal flipping, cropping, and padding, are
often used to train CNNs. Data augmentation is common for deep learning models to obtain
better results with more data.70 Imbalanced small datasets affect model performance by creat-
ing problems that are overtuned during model training. To overcome the same problem, the
proposed model used the process of data augmentation in this work. Several methods are sup-
ported in data augmentation and the pixel resizing method. Nevertheless, we focused on seven
basic data augmentation techniques for the selected MRI data. These included shift_width_range,
shift_hight_range, horizontal_flip, vertical_flip, rotation_range, shear_range, and zoom_range.
The proposed model HRAL-CTNN has solved the problem of imbalanced data using the above
data augmentation techniques. The resultant extended part of MR images are generated after
seven data augmentation techniques and also taking their precise threshold values. Table 2 pre-
sented the proposed model using all data augmentation techniques with their applied parameters.
Algorithm 1 presents all the steps involved in image processing and data augmentation.

2.3 Conjoined CNN with hierarchical residual attention learning

We have proposed a conjoined CNN for model training and testing in this study. We involved a
combined platform with a modified CTNN, in which two divisions work similarly. These divi-
sions are (1) a training model division that extracts the proposed features for the training set and
weights by using the attention argument engendered with the attention channel and (2) a test
model division that extracts the model features for the test set and weights by using the attention
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T A B L E 2 Data augmentation techniques and their parameter values.

Data augmentation technique Parameter value

Shift_width_range 0.15◦

Shift_hight_range 0.15◦

Horizontal_flip −200 to 200

Vertical_flip −300 to 300

Rotation_range 5◦

Shear_range_factor 0.2◦

Zoom_range_factor 1.0, 1.5

Algorithm 1. Image preprocessing with data augmentation

1: procedure ImagePreprocess (Input: MRI; Alzheimer’s stages: S)
2: Input: MRI Images: i ∈ [1, I]; Stages: S← {CN, SMC, EMCI, LMCI, AD}
3: Output: P (MRI)←Preprocessed MR images
4: for all MRI Images: i ∈ [1, I] do
5: for all Stages S do
6: Contrast stretching: COS (i)← i ∈ [1, I].
7: COS (i1, i2, i3, … in)← i ∈ [1, I]
8: Image acquisition: f s ←COS (i1, i2, i3, … in)
9: Nonlinear filter: N0 ← f s (𝛼R + 𝛽S)
10: Hierarchical Segmentation: KC ←N0 (Gx2 +Gy2)
11: end for
12: data augmentation {shift, flip, rotation zoom, shear}
13: end for
14: end procedure

argument engendered with the attention channel.71,72 The final output of both divisions has
been provided for the multistage correlation filter. The primary purpose of using hierarchical
initiated residual attention-aware learning was to create more effectual, propagative, and discrim-
inative extracted features. In our model, CNN layers extract local features from Alzheimer’s MR
images. The proposed CNN model holds individual nodes with ascertainable bias and weights.
The weights are in the form of matrix, also known as convolutional kernel. The dimensionality
reduction in our proposed model is done by the pooling layer. For the twin CNN as a modified
CTNN, we have used the same convolutional layer formula in Equations 1–3. We used the ReLU
(rectified linear unit) activation function sequentially layer-by-layer operation. VGG19 stands for
the layers of convolutional networks that take some weights. Table 1 gives all the layered and
activation function information.

H = IH − KH + 2(PD)
St

+ 1, (1)
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790 SHANKAR et al.

where H is the layer’s height, IH is the image height, KH is the kernel height, PD is padding, and
St is strides, which means pixels shift over the input matrix.

W = IW − KW + 2(PD)
St

+ 1, (2)

where W is the layer width, IW is the image width, KW is the kernel width, PD is the padding,
and St is the stride.

In general,

C = IHW − F + 2 (PD)
St

+ 1, (3)

where C is the convolutional layer, IHW is the image height and width, PD is padding, St is strides,
and F is a fitter.

Residual attention learning is a neural network-based attention mechanism.71,72 It is com-
patible with the most cutting-edge feed-forward network design and is used for end-to-end
model training and discriminating features. We have used hierarchical residual attention
learning-inspired multistage conjoined twin network for obtaining efficient attention-aware
and generative features that are discriminative. Hierarchical residual attention learning is the
subsequent formation of an attention module, written in Equation 4.

Y (x) = T(x) ∗ F(x), (4)

where F(x) are the features of an MRI image x from the convolutional layer, T(x) is the attention
module map generated after the hourglass unit (a feature position estimation),73 and Y (x) is the
attention module-aware developed features after map generation. The asterisk (*) symbol is the
matrix product of T(x) and F(x).

The attention module initiated residual network in the form of residual skip connection for
upgrading the performance of modified CTNN has been used in this study. We have proposed the
same hierarchical initiated residual attention learning method for obtaining effectual, propaga-
tive, and discriminant extracted features. The proposed modified hierarchical residual attention
learning method has been mentioned in Equation 5. The proposed model cum architecture of a
conjoined twin neural network (CTNN) with a hierarchical initiated residual attention module
for Alzheimer’s stage classification is shown in Figure 1.

Y (x) =
∑

u
Tu(x) ∗ F(x) + F(x), (5)

where Tu (x) is a hierarchical attention module map with u as the number of attention mod-
ule maps, Y (x) is the output attention module aware feature set, and F(x) is the features of an
MRI image x from the convolutional layer. Here, we combined F(x) with an existing attention
mechanism for upgrading the CTNN performance. Algorithm 2 processes all the steps involved in
the proposed CTNN model. Algorithm 3 includes all the steps of the attention learning-initiated
multistage correlation filter.
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SHANKAR et al. 791

F I G U R E 1 Proposed architectural model cum framework.

Algorithm 2. Pseudocode of proposed CTNN model

1: procedure CTNN (Input: An, Neurons, Epoch, Repeat)
2: Input: XF ← {An: Attentive features; Neurons; Af: Activation function}
3: Output: Cd ←Classification {AD, EMCI, LMCI, SMC, CN}
4: Train CTNN
5: for each XAn ϵ {1, 2… … , An} do
6: for Neurons= 1 to XAn do
7: for Epoch= 1 to 30 do
8: for Repeat= 1 to 30 do
9: Train CTNN
10: CTNN(TN)← (17 Conv, 2FC, 5MP, 4N, 4GN)
11: Af: Activation function (H) = IH−KH+2(PD)

St
+ 1

12: end for
13: Lw: Layers width(W) = IW−KW+2(PD)

St
+ 1

14: Twin convolutional layer(C) = IHW−F+2 (PD)
St

+ 1
15: end for
16: end for
17: end for
18: return Cd
19: end procedure
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792 SHANKAR et al.

2.4 Multistage correlation filter

Correlation filters74,75 are the primary classifiers specifically optimized to have sharp peaks in
the correlation output to accurately find the MRI images’ features. Most correlation filter-based
models are not context aware and do not generate minimal context information while tracing.
This is generally because the feature area for each image is just outside the target area image. We
have included a multistage correlation filter to improve the features tracking discriminant ability.
This includes context-aware, regression-enabled, and specialized attribute adaptation MRI image
tracking and extraction. We used a correlation filter as a layer in CNN. It has previously been
demonstrated that the correlation filter strategy has been formulated in the form of the layer in a
neural network. In an MRI image i ∈ [1, I], we applied optimization with some objective functions
about the correlation filter for parameter u and the regression variable v.

arg min
u,v

O = ‖M0 u − v‖2
2 + 𝜃1 ||u||22 + 𝜃2 ‖v − v0‖2

2 + 𝜃3

p∑

x=1
‖Mx u‖2

2, (6)

where v0 is the constraint-based relative matrix that helps to maintain the regression variable v, M0
is the sample of MRI image from I (M0 ∈ I), Mx is the feature context information concerningM0,
with 𝜃1, 𝜃2, and 𝜃3 used to reduce overfitting or prevent it, known as the regularization parameter,
and m0 and mx are the base sample of M0 and Mx circulant matrix. We have modified the objective
function given in Equation 6 using a discrete Fourier transform and convex function with M0
and Mx in the form of a circulant and converting the u filter parameter in a modified form of a
multistage filter (Equation 7).

û =
𝜃2

(
m̂0 ⊙ v̂0

)

𝜃2
(

m̂∗
0 ⊙ m̂0 + 𝜃3

∑p
x=1m̂∗

x ⊙ m̂x
)
+ 𝜃1 ( 1 + 𝜃2)

, (7)

m̂∗
0 is the conjugate of m̂0, and m̂∗

x is the conjugate of m̂x From DFT, the representation of ⊙ is a
Hadamard product or entry-wise product.

Algorithm 3. Pseudocode of novel hierarchical residual attention learning with correlation filter

1: Input: An ← {F(x): MRI features; T(x): Attention map; Hourglass Unit}
2: Output: Y (x)← attention module aware feature set
3: While F(x)> 0 do {
4: for each XAn ϵ {1, 2…… , x} do
5: for attention map T(x)= 1 to n do
6: HU←Hourglass Unit (point estimation)
7: Y (x) = T(x) ∗ F(x)
8: for hierarchical attention Tu(x)= 1 to m do
9: Revised HU←Revised Hourglass Unit (point estimation)
10: Y (x) =

∑
u

Tu(x) ∗ F(x) + F(x)

11: end for
12: end for
13: Generate correlation filter (û,v)
14: arg min

u,v
O = ‖M0 u − v‖2

2 + 𝜃1 ||u||22 + 𝜃2 ‖v − v0‖2
2 + 𝜃3

∑p
x=1‖Mx u‖2

2
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SHANKAR et al. 793

15: û = 𝜃2 ( m̂0⊙v̂0)
𝜃2 ( m̂∗

0⊙m̂0+𝜃3
∑p

x=1m̂∗
x⊙m̂x )+𝜃1 ( 1+𝜃2)

16: end for
17: }
18: return Y (x)

2.5 Normalization and regularization

Normalization adjusts the data, while regularization adjusts the prediction function.76–78 When
the previously used layer parameter in the CNN is changed, the input of individual layer changes;
therefore, the CNN model training is complex. Consequently, the activation function we have
used in our model as ReLU quickly drops the gradient. This happens because the deep learning
model’s learning rate is degraded, and the model slackens progressively. We used hybrid layer
normalization to overcome the same problem with the learning rate and deep learning model
performance. Hybrid layer normalization decreased the parameter initialization and improved
the learning rate. The variance and mean are captured in the input layer during parameter ini-
tialization, and the internal covariant is shifted to mitigate it. We formulated the Hybrid Layer
Normalization (HLN) in Equations 8–12.

li = HLN
𝛾,𝛽,𝛼

(ri) , (8)

𝜇s =
1
k

k∑

i=1
ri, (9)

σ2
s =

1
k

k∑

i=1
(ri − 𝜇s)2, (10)

ri =
ri − 𝜇s√
𝜎

2
s + 𝜖

, (11)

Li =
∑

li

li = 𝛾.ri + 𝛽 + 𝛼

}
, (12)

where k shows the number of layered batches and 𝜇 and 𝜎

2 represent the mean and vari-
ance captured in the input layer, respectively. ri shows each row of covariants with the help of
Equations 8–10. We evaluated the 𝜇 and r2 of each activation under layered batches. Equations 11
and 12 are three hyperparameters 𝛾, 𝛽, and 𝛼, which improve the learning rate. We have incorpo-
rated Gaussian distribution noise79 to improve the regularization and efficiency of the proposed
work.

The distribution of the proposed CTNN model is shown in Table 3. The proposed architectural
model cum framework is presented in Figure 1. We have presented the overall pseudocode of the
proposed model in Algorithms 1–3.

3 RESULTS

In our proposed work, we evaluate the ability of discriminant features captured by the HRAL. We
implement multiclass classification using CN, SMC, LMCI, EMCI, and AD classes. We find the
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794 SHANKAR et al.

T A B L E 3 The proposed CTNN model layers with a correlation filter.

Layer Name of layer
Size of
kernel

Size of
pool

Convolutional
filters

1 Conv2D1+ReLU(f) 3 64

Normalization

2 Conv2D2+ReLU (f) 3 64

Max-pooling1 2

3 Conv2D3+ReLU(f) 3 128

Gaussian distributed noise

Normalization

4 Conv2D4+ReLU(f) 3 128

Max-pooling2 2

5 Conv2D5+ReLU(f) 3 256

Normalization

6 Conv2D6+ReLU(f) 3 256

Gaussian distributed noise

7 Conv2D7+ReLU(f) 3 256

8 Conv2D8+ReLU(f) 3 256

9 Conv2D9+ReLU(f) 3 256

Max-pooling3 2

10 Conv2D10+ReLU(f) 3 512

11 Conv2D11+ReLU(f) 3 512

Gaussian distributed noise

12 Conv2D12+ReLU(f) 3 512

13 Conv2D13+ReLU(f) 3 512

Max-pooling4 2

14 Conv2D14+ReLU(f) 3 512

Gaussian distributed noise

15 Conv2D15+ReLU(f) 3 512

Normalization

16 Conv2D16+ReLU(f) 3 512

17 Conv2D17+ReLU(f) 3 512

Max-pooling5 2

18 Flattening 1

19 Flattening 2

20 Merge (2)

21 Fully connected+ReLU4096

22 Fully connected+ReLU4096

23 Softmax (3)

24 Correlation filter (4)
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SHANKAR et al. 795

training accuracy, training loss, validation accuracy, validation loss, accuracy with normalization,
correlation filter, and parameter tuning. Following each iteration of the optimization process, the
loss value of a model reveals how well or how poorly the model performs. An accuracy measure is
employed to evaluate an algorithm effectively for the proposed model performance. After setting
up the parameter tuning of a model, it is common practice to arrive at an estimated accuracy
for the model. In our case, this step is performed after the model has already been validated.
We have hypertuned the parameter of Hybrid Layer Normalization as γ, β, and α and obtained
a stable highest result at 𝛼 = 0.33, 𝛽 = 0.32, 𝛾 = 0.35. The procedure of choosing the best possible
values for a learning algorithm is recognized as “hyperparameter tuning.” A model argument
whose value is figured out before learning is called a hyperparameter. Tuning the algorithm’s
hyperparameters is important to improve deep learning performance. To evaluate the evaluation
metrics, we evaluated the accuracy, precision, recall, or sensitivity, f1 score, and specificity for all
possible model combinations. Based on the model assessment, we evaluated the confusion matrix.
Confusion matrices are measurements often used to show how well a classification model (also
called a “classifier”) did on a set of test data for which the actual values were already known. It is
done by comparing the model’s predicted values to the actual ones. We have considered evaluation
performance or assessment metrics in Equations 13 and 14. The accuracy is evaluated as follows:

Accuracy (A) =
COp

Allp
, (13)

where COp is the correct prediction and Allp is all predictions.
The precision, recall, F1 score, and specificity are evaluated as follows:

Precision (P) = TP
TP+FP

Recall (R)|| Sensitivity (S) = TP
TP+FN

Specificity(Sp) = TN
TN+FP

F1 Score(F1) = 2 PR
P+R

⎫
⎪
⎪
⎬
⎪
⎪⎭

, (14)

where TP is the true positive, FP is the false positive, FN is the false negative, and TN is the true
negative.

This paper proposes HRAL-based CTNN model for training and extracting attention-aware
features for classifying Alzheimer’s disorder. Figure 2A evaluates the validation and training accu-
racy by balancing data using data augmentation and Gaussian distribution noise on the Brain MR
Images. We have executed the proposed work for 30 epochs and evaluated the maximum valida-
tion accuracy of 99.92% and test accuracy of 99.15%. The maximum validation accuracy showed
no overfitting in the proposed model.

Figure 2B shows that the model validation loss decreases if we increase epochs (best at 30
epochs), and at the 30th epoch, the validation loss is less than the training loss. Figure 2C presents
switch normalization, group normalization, batch normalization, and layered batch normaliza-
tion. We compared the training loss evaluated from all four normalizations at different epochs.
Subsequently, the proposed layered batch normalization produces less loss with higher accuracy
than other normalization techniques. In Figure 2D, we evaluated each normalization technique’s
validation accuracy, which shows layered batch normalization with a validation accuracy of
99.92%. Figure 2E,F present the validation and training accuracy after correlation filtering. The
validation accuracy increased by 0.06% after correlation filtering and was evaluated as 99.97%.
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796 SHANKAR et al.

(A) (B)

(C) (D)

(E) (F)

F I G U R E 2 Proposed model accuracy and loss: (A) training accuracy and validation accuracy, (B) training
loss and validation loss, (C) loss with normalization, (D) accuracy with normalization, (E) accuracy without
correlation filter, (F) accuracy with correlation filter.
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SHANKAR et al. 797

T A B L E 4 Hyperparameter values (𝛾, 𝛽, and 𝛼) based on evaluation metrics of the proposed model.
Parameter value:
𝜸, 𝜷, and 𝜶; Model:
(CTNN+HRAL+
MCF+NR) Precision Recall Accuracy F1-score Specificity

𝛼 = 0.35, 𝛽 = 0.32, 𝛾 = 0.33 98.71± 0.18 97.91± 0.14 98.87± 0.07 98.26± 0.06 96.01± 0.19

𝛼 = 0.35, 𝛽 = 0.33, 𝛾 = 0.32 98.56± 0.13 97.25± 0.11 98.13± 0.03 97.99± 0.02 95.81± 0.15

𝛼 = 0.33, 𝛽 = 0.32, 𝛾 = 0.35 98.85± 0.19 97.94± 0.13 98.91± 0.08 98.37± 0.06 96.09± 0.18

𝛼 = 0.32, 𝛽 = 0.35, 𝛾 = 0.33 98.44± 0.13 97.21± 0.10 98.12± 0.03 97.98± 0.03 95.71± 0.17

𝜶= 0.33, 𝜷 = 0.32, 𝜸= 0.35 99.62± 0.11 98.98± 0.10 99.97± 0.01 99.30± 0.02 97.21± 0.12

𝛼 = 0.32, 𝛽 = 0.33, 𝛾 = 0.35 99.22± 0.10 98.54± 0.12 99.18± 0.02 99.05± 0.01 97.13± 0.10

𝛼 = 0.5, 𝛽 = 0.5, 𝛾 = 0.0 96.98± 0.14 96.33± 0.11 97.22± 0.05 97.09± 0.01 95.61± 0.09

𝛼 = 0.5, 𝛽 = 0.0, 𝛾 = 0.5 97.12± 0.17 97.71± 0.12 97.82± 0.06 97.29± 0.02 96.67± 0.11

𝛼 = 0.0, 𝛽 = 0.5, 𝛾 = 0.5 96.99± 0.15 96.59± 0.15 97.41± 0.06 97.13± 0.02 95.91± 0.10

Note: Bold values are best values of hyperparameter (𝛾 ,𝛽,and 𝛼).

T A B L E 5 Overall evaluation metrics comparison with different models.

Evaluation metrics
Models Precision

Recall-
sensitivity Accuracy F1 score Specificity

Only CNN 94.35± 0.15 94.00± 0.13 95.00± 0.08 94.18± 0.04 93.46± 0.12

3D-CNN 97.00± 0.13 97.15± 0.11 98.00± 0.05 97.08± 0.02 96.19± 0.10

CNN+HRAL 97.77± 0.14 97.15± 0.10 97.80± 0.03 97.46± 0.03 97.00± 0.09

CTNN+HRAL 98.00± 0.19 97.30± 0.11 98.26± 0.04 97.65± 0.02 96.77± 0.08

CTNN+HRAL+MCF+NR 99.62± 0.11 98.98± 0.10 99.97± 0.01 99.30± 0.02 97.21± 0.12

For stagewise classification, we showed the combined confusion matrix covering stages such
as cognitive normal (CN), significant memory concern (SMC), early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD). Table 4 presents
the hyperparameter values (𝛾, 𝛽, and 𝛼) based on evaluation metrics of the best combination
with stable validation accuracy. We evaluated a combined F1 score of 99.30± 0.02% from the
same confusion matrix, the harmonic mean between the precision of 99.62± 0.11% and recall of
98.98± 0.10%. Table 5 presents the evaluation metrics and comparison with the combination of
models. In Figure 3, we have covered a different combination of the model’s confusion matrices
with their comparisons.

One kind of resampling is called cross-validation,23,50,60 a technique that includes testing and
training a model with variable iterations using diverse data subsets. Its principal aim, in which
prediction is the goal, as well as an extensive aim, is to evaluate the degree of accuracy a predictive
model will accomplish when it is put into action. Cross-validation is a tried-and-true method for
preventing the practice of overfitting in statistical and computational models. The entire collec-
tion of data has been segmented into several parts. To carry out standard K-fold cross-validation,
the data must be partitioned into k folds first. Then, we put the algorithm through its paces by
repeatedly folding k−1 sets of data while using the remaining holdout fold as a test set. We use
cross-validation in our proposed model to prevent overfitting. We use six cross-validation methods
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798 SHANKAR et al.

(A) (B)

(C) (D)

F I G U R E 3 Models comparison with confusion matrix: (A) CTNN+HRAL+MCF+NR, (B)
CTNN+HRAL, (C) CNN+HRAL, (D) Only CNN.

with different k-values/p-values to find accuracy in Table 6. We have chosen the p-value and
k-value as per the static accuracy score. From Table 6, the proposed model has no overfitting and
gives the approximate result at k= 10 and p= 200 compared to Table 5.

4 DISCUSSION

We have compared the model developed by our group with most of the literature. Kruthika
et al.37 used the concept of a three-dimensional CNN. Computer-assisted diagnostic methods
using content-based image retrieval (CBIR) were used to make diagnoses of Alzheimer’s disease.
The model was evaluated with an imbalanced dataset and correlated features, which caused over-
fitting and biases in the model. The author evaluated the 98.42% accuracy of their model. Rachna
et al.44 approached the problem by applying transfer learning with a CNN. They trained VGG-16
on the ImageNet dataset, which was used for feature extraction in the classification model. The
author reported the same transfer learning-based CNN model with 95.73% accuracy. Basaia et al.57
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SHANKAR et al. 799

T A B L E 6 Accuracy with different cross validation techniques.

k-value k= 3 k= 5 k= 10 k= 15 k= 20

Cross-validation

k-folds 97.92± 0.28 98.90± 0.17 99.58± 0.02 99.08± 0.03 98.14± 0.02

Repeated k-folds 98.18± 0.15 98.94± 0.12 99.94± 0.01 99.17± 0.07 98.11± 0.05

Nested k-folds 98.23± 0.13 98.93± 0.14 99.95± 0.02 99.19± 0.06 98.14± 0.03

Stratified k-folds 98.25± 0.11 98.93± 0.14 99.96± 0.03 99.21± 0.06 98.15± 0.01

p-value p= 1 p= 50 p= 100 p= 200 p= 500

Leave-one-out 99.95± 0.03 — — — —

Leave-p-out — 98.90± 0.11 99.18± 0.05 99.94± 0.04 98.12± 0.05

developed a framework based on a CNN, which was focused on mild cognitive impairment (MCI)
magnetic resonance imaging. The author reported 75% accuracy of the CNN model. Asl et al.80

used the 3D-DSA-CNN-based deep learning method with classification accuracy of 97.60% for
each stage. They proposed that AD prediction improved with a deep 3D convolutional neural net-
work (3D-CNN) to display the generic features of apprehending AD biomarkers taken from MR
brain images. Goceri58 presented a gradient-based stochastic optimizer-oriented 3D-CNN for AD
diagnosis with 98.01% accuracy. The model discussed by Shuangshuang et al.47 is a patch- and
ROI-based feature extraction with deep learning-based model implementation. The limitations
of this model are that they have not covered all stages of Alzheimer’s, and there is no feature dis-
crimination, due to which there is less accuracy than 90% reported. Shankar et al.48 presented
a novel shared correlation–based feature selection process. They used a discriminative feature
selection-initiated supervised machine learning model. They have reported 94%–96% accuracy,
but this work’s limitation does not include automatic feature extraction, and the data are imbal-
anced in this model. A review was projected by Grueso et al.,49 in which they covered review
concepts from different studies and gave a comparative analysis of them. A result analysis54 shows
the DL approach, specifically CNN, with an average reporting accuracy between 95%–97%. Only
four stages are covered in this study, and the rest of the stages of Alzheimer’s are not included in
this approach. Due to redundant features extracted from MRI, this model also reports overfitting.
A manifold structure55 of AD by Martinez-Murcia et al. reported prediction accuracy of 80% with
two stages of Alzheimer’s disease (AD and NC). In the case of the deep learning model, this accu-
racy is lower, as many discriminative features are not extracted during the model training. A small
image dataset is also a significant issue for the lower accuracy of this model. Wen et al.56 proposed
a hybrid transfer learning model with CNN and reported 85%–86% accuracy. They used fivefold
cross-validation to validate the data. They have not trained hyperparameters, and the dataset is
too minimal to work with a deep learning model. They have performed the classification task
with binary AD, and multiclass AD needs to be added to distinguish all stages of Alzheimer’s.
As discussed by many studies, their proposed method does not cover Alzheimer’s stage detection
among all stages of Alzheimer’s and discriminative selection of features. On average, most studies
reported accuracy of 75.4%–78.5%.

The proposed CTNN-based model outperformed existing state-of-the-art models. For stage-
wise classification, we covered stages such as cognitive normal (CN), significant memory concern
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T A B L E 8 Time spent (elapsed time) comparison of different model’s inference.

Models Individual subjects Elapsed time (hh: mm: ss)

Only CNN 7000 02: 47: 41

3D-CNN 7000 01: 34: 19

CNN+HRAL 7000 01: 15: 12

CTNN+HRAL 7000 00: 59: 13

CTNN+HRAL+MCF+NR 7000 00: 46: 09

(SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and
Alzheimer’s disease (AD). We have evaluated and presented our model result in Figure 2 with
99.97% accuracy in the same dataset cohorts. In Table 5, we show the evaluation metrics scores of
our model with precision of 99.62%, recall of 98.98%, F1-score of 99.30, and specificity of 97.21%.
Table 7 shows the comparative study of our work with the latest literature.

The proposed model has also been validated, compared, and evaluated time spent on overall
model inference in terms of elapsed time. Table 8 shows the elapsed time comparison of the pro-
posed HRAL-CTNN model with existing models. The proposed model shows less elapsed time
compared to existing models.

5 CONCLUSION

This paper proposes HRAL-based CTNN deep learning architecture for multistage Alzheimer’s
classification using a modified VGG19 conjoined twin model. We have covered stages of
Alzheimer’s, such as CN, SMC, EMCI, LMCI, and AD. This study focused on unbalanced data
and overfitting the model using data augmentation and hierarchical initiated residual atten-
tion learning. We also used discriminant features and analyzed them using a correlation filter.
We put forward a novel multistage conjoined neural network-based CNN that utilizes the hier-
archical residual attention-based model to reach high-performance efficiency for Alzheimer’s
disorder diagnosis. To regularize and learn parameters, we used switch-group-batch normaliza-
tion. The ADNI MRI dataset was used to assess the implementation feasibility of the proposed
work. The proposed HRAL-based CTNN attained accuracy of 99.97± 0.01% and F1 score of
99.30± 0.02% for Alzheimer’s stage classification. The proposed model outperforms the previ-
ously published research about model accuracy and performance scores in this area. This work
has a weakness: it cannot make complex decisions beyond earlier training. In the future, we would
like to work with more discriminant features and build a large dataset-based transfer learning
model.
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